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Emails: georgeacioli@yahoo.com.br, marcusarb@yahoo.co.uk, isabela.svieira@bol.com.br,
prbarros@dee.ufcg.edu.br

Abstract— In this work the identification of first-order plus dead-time models from time and frequency domain
experiments is considered. Alternative techniques for identification are examined and simple algorithms are
proposed for dealing with the dead-time. Simulation examples are used to illustrate the techniques.
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Resumo— Neste trabalho a identificação de modelos de primeira ordem com atraso através de experimentos
no domı́nio do tempo e da frequência é considerada. Técnicas alternativas de identificação são examinadas e
algoritmos simples que tratam do atraso são propostos. Exemplos de simulação são usados para ilustrar as
técnicas.
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1 Introduction

The estimation of continuous-time models from
sampled data has received some attention in the
last years, motivated by the need of such mod-
els to recover physical parameters or to allow the
use of design techniques developed for continuous-
time controllers. An extensive list of references on
the subject can be found in (Mensler, 1999), in
which a detailed survey discusses the advantages
of a direct approach in relation to the indirect esti-
mation of a discrete-time model plus a later trans-
formation into a continuous-time model. Several
papers have been presented in recent conferences
(for instance, 13th IFAC Symposium on System
Identification (SYSID 2003) and 16th IFAC World
Congress 2005) to report new developments and
applications.

The continuous-time results reported in the
literature mainly address finite-dimensional sys-
tems. But dead-time is present in several indus-
trial processes so that simple models such as first
and second order dead-time continuous time one
are widely used to tune industrial controllers. In
the design of PID controllers the process model
that receives most attention is first-order plus
dead-time model (FOPDT) (Sudaresan and Kr-
ishnaswamy, 1977). There are a few methods to
estimate parameters for this model. Among them
one can mention the graphics and the area meth-
ods (Åström and Hägglund, 1995). A method
less sensitive to noise is proposed in (Wang et al.,
1999) which uses least-squares method to estimate
the parameters of FOPDT model. Variants of
this methods are used in (Wang and Zhang, 2001)
and (Wang et al., 2000). For such simple mod-

els the results are remarkably good and motivated
the present work. Closed loop methods exist such
the one presented in ((G. Acioli Júnior and Bar-
ros, 2006)).

In this paper three techniques are compared
for the estimation of continuous-time systems
from discrete-time measurements. The first tech-
nique is the one presented in (Coelho and Bar-
ros, 2003)) and requires only a step input. The
second approach, starts with the use of an inte-
grator relay test to obtain the transfer function re-
sponse at the frequency for which the process has
90o phase shift and uses excitation with twice this
frequency to obtain another point of the process
frequency response. The combination with the
step input is used in a mixed time-frequency do-
main estimation problem to estimate the process
with time delay. Finally, in the third case, the
process is excited with a signal obtained by switch-
ing between two relay tests. The step response is
recovered solving a constrained least-squares min-
imization which uses the Frequency Sampling Fil-
ters ((Wang and Garnier, 2005)). The FOPDT
model is estimated applying the algorithm of the
first technique to this step response.

This paper is organized as follows. In Sec-
tion 2, the problem statement is presented. The
continuous-time identification of FOPDT tech-
niques are presented in in Section 3. In Section
4 the techniques are compared using simulations
of examples and, finally, conclusions are presented
in Section 5.



2 The Problem Statement

In this paper it is considered the identification of
FOPDT continuous-time models represented by

G (s) =
b

s+ a
e−Ls. (1)

It is assumed open-loop operation and that the
excitation applied to the process is restricted to
a step response, simple relay tests or simple ex-
citation generated from a relay-based signal. Al-
though it is desired to estimate a continuous-time
model, the available data to the estimation is
discrete-time. The aim of the paper is to eval-
uate the improvements obtained, for such simple
models, by the increase of the excitation content
and the complexity of the techniques.

The excitation content is increased as follows.
The simplest excitation is a step input. The exci-
tation content is increased by using two relay tests
(standard and integrator) as presented in (Åström
and Hägglund, 1995). In the standard test a re-
lay is applied in an unity feedback loop so that an
oscillation develops at a frequency for which the
process has phase 180o. The integrator relay test
has an additional integrator so that the oscilla-
tion develops at a frequency for which the process
has phase 90o. The relays tests are used in two
ways. In first case, the integrator relay test is per-
formed and the oscillation frequency ω̂g is mea-
sured. Then a square wave with frequency 2ω̂g is
also applied to the process. In the second case,
the two relays are switched to generate a more
exciting signal.

3 Techniques for the Identification of
FOPDT Models

In this Section the identification techniques are
described.

3.1 Technique 1: Identification of FOPDT
Model from a Step Input

The process is assumed to be at steady-state at
t = 0 so that, without loss of generality, u (t) = 0
for t < 0 and zero initial conditions are assumed.
For t ≥ L the process is assumed to satisfy the
differential equation

ẏ (t) + ay (t) = bu (t− L) , (2)

where the disturbance term has been omitted.
Integrating Eq.(2) from τ = 0 to τ = t yields

y (t) = −a
∫ t

0

y (τ) dτ + b

∫ t

0

u (τ − L) dτ.

In continuous-time identification, techniques
which use such models (with L = 0) are named

Integral Methods (Mensler, 1999). An integral
method has been used in (Wang et al., 2000), with
the process in open loop and under a step input
with amplitude h applied at t = 0. For this case
the model also satisfy

y (t) = −a
∫ t

0

y (τ) dτ + bht− bhL,

from which a regression model can be obtained on
model parameters {a, b, bL}, from which L can be
extracted. The estimate is computed using instru-
mental variable method (see (Ljung, 1999)).

Define

φ (t) =
[
− ∫ t

0
y (τ) dτ ht −h

]T
,

θ̂ =
[
a b bL

]T
,

ψ (t) =
[
− ∫ t

0
x (τ) dτ ht −h

]T
. (3)

Where x(t) = ĜLS1(t)u(t). ĜLS1(t) is the re-
sult of a direct least-squares estimation method.
ψ(t) is the instruments. For the instrumental vari-
able method, form matrices

Y =
[
y (0) y (T ) · · · y ((N − 1)T )

]T
,

Φ =
[
φ (0) φ (T ) · · · φ (((N − 1)T ))

]T
,

Ψ =
[
ψ (0) ψ (T ) · · · ψ (((N − 1)T ))

]T
.

Finally, compute the instrumental variable es-
timate

θ̂IV 1 =
(
ΨTΦ

)−1
ΨTY (4)

and the corresponding model ĜIV 1 (s) .

3.2 Technique 2: Identification of FOPDT
Model from a Mixed Time-Frequency Least
Squares

In the second technique, a mixed time-frequency
domain estimation problem is used. A step re-
sponse test is used to obtain the signals for the
time part and the model from the previous tech-
nique is used. An integrator relay test is used
to obtain, via DFT, the frequency response at the
90o phase shift frequency ω̂g. In addition, a square
wave with twice this frequency (2ω̂g) is used to ob-
tain the second frequency point.

The mixed time-frequency minimization prob-
lem is a weighted estimation problem combining
the step response test (with the regression model
from the previous technique) with the two esti-
mated frequency response points. For the fre-
quency domain part, consider the approximation
for model 1 given by G (s) = b(1−sL)

s+a . And that

the frequency response at G (jω) = b(1−jωL)
jω+a with

ω ∈ {ω̂g, 2ω̂g}.



For the same frequencies estimates Ĝ (jω) are
available from the DFT on the composed excita-
tion test. Thus, the following regression model
can be obtained:

ẑ = xT (ω) θ̂

with

ẑ = jωĜ (jω) ; xT (jω) =
[
−Ĝ (jω) 1 − jω

]
.

Now, define the cost function

J =


 (1− α)

N

N∑

i=1

(y − ŷ)2 +
α

M

M∑

j=1

(z − ẑ)2




where N is the number of time samples and M is
the number of frequencies points (M = 2) and α
a constant weight in the range [0, 1]. It should be
noticed that the frequency information enters in
the problem as part of the cost function. Rewrite
the cost function in compact form by defining Ŷ =
Φθ̂ and Ẑ = Xθ̂, so that the cost function becomes

J =
(1− α)
N

(
Y − Φθ̂

)T (
Y − Φθ̂

)
(5)

+
α

M

(
Z −Xθ̂

)T (
Z −Xθ̂

)
. (6)

Lemma: The solution θ̂ which minimizes the
cost function 6 is given by

θ̂LS2 =
[

(1− α)
N

ΦTΦ +
α

M
XTX

]−1

[
(1− α)
N

ΦTY +
α

M
XTZ

]
.

Proof:

∂J

∂θ
=

(1− α)
N

[
− (Y TΦ

)T − ΦTY +
(
ΦTΦ + ΦTΦ

)
θ̂
]

α

M

[
− (ZTX)T −XTZ +

(
XTX +XTX

)
θ̂
]

= 0.

Perform a few manipulations to obtain

(1− α)
N

ΦTY+
α

M
XTZ =

[
(1− α)
N

ΦTΦ +
α

M
XTX

]
θ̂

from which the result follows if matrix[
ΦTΦ +XTX

]
is nonsingular.

Transfer function ĜLS2 (s) is directly ob-
tained from θ̂LS2. ψ(t) is defined as in 3 and the
instrumental variable estimate is given by

θ̂IV 2 =
[

(1− α)
N

ΨTΦ +
α

M
XTX

]−1

[
(1− α)
N

ΨTY +
α

M
XTZ

]
.

Transfer function ĜIV 2 (s) is directly obtained
from θ̂IV 2.

3.3 Technique 3: Identification of FOPDT
Model from Constrained Identification

In the third technique, the process step response
is recovered using the procedure presented in
((Wang and Garnier, 2005)). The procedure
solves a least-squares problem for the Frequency
Sampling Filter coefficients plus constraints on
time and frequency. In this paper only equality
constraints are used. The first constraint is the
assumption that the estimated 90o frequency re-
sponse point is true. The second constraint is that
the step response is known to be zero up to a lower
bound estimate for the time delay. The step re-
sponse is obtained using an excitation obtained
by switching between the two relay tests after a
number of oscillation periods. A FOPDT model is
estimated from the estimated step response using
the least-squares algorithm of the first technique.
It should be noticed that unlike the previous tech-
nique, here the frequency information enters in the
problem as a restriction, as well as a-priori infor-
mation on the time delay.

The general idea is as follows (for details see
((Wang and Garnier, 2005))): The step response
is estimated using the discrete transfer function
of the system which can be represented in terms
of the frequency response coefficients via the fre-
quency sampling filters(FSF) expression:

G(z) =

n−1
2∑

l=−n−1
2

G(ejlΩ)H l(z) (7)

where n is an odd number to represent the
number of significant parameters in the FSF
model and H l(z) are the frequency sampling fil-
ters. The estimated parameters are

θ̂ =




G(ej0)
Re(G(ejΩ)
Im(G(ejΩ)

...
Re(G(ejΩ

n−1
2 )

Im(G(ejlΩ
n−1

2 )




The step response of the system at the sample
m has a linear relation to θ̂ via

gm = Q(m)T θ̂ (8)

where

Q(m) =




m+1
N

2 Re(S(1,m))
2 Im(S(1,m))

...
2 Re(S(n−1

2 ,m))
2 Im(S(n−1

2 ,m))




S(l,m) =
1
N

1− ejlΩ(m+1)

1− ejΩ , l = 1, 2, ...,
n− 1

2
.



Equality constraints in the time and frequency
domains can be expressed in a linear form

Mθ = γ.

In this paper the frequency information is the
90o frequency response point and a lower bound
on the time delay. By defining

E =
M∑

k=1

[
φD(k)φD(k)T

]

F = −2
M∑

k=1

[φD(k)yD(k)] ,

where φD(k) and yD(k) are the (FSF) regres-
sor and output signals, respectively (see (Wang
and Garnier, 2005)), the optimal least-squares
with equality constraints solution has a closed-
form as

[
E MT

M 0

] [
θ
λ1

]
=
[ −F

γ

]

which can be solved explicitly as

λ1 = −(ME−1MT )−1(γ +ME−1F )

θ̂ = −E−1(F +MTλ1)

and the corresponding model ĜLS3 (s) is es-
timated using the least-squares algorithm of the
first technique and the step response estimated by
8.

4 Simulation Examples

In this section the identification techniques are ap-
plied to three processes. The cost function used
to compare the estimates is

ε =
1
N

N−1∑

k=0

[x (kT )− x̂ (kT )]2

where x (kTs) is the actual process output (with-
out noise), while x̂ (kTs) is the output of the sim-
ulation of the estimated process under the same
step setpoint. In the first simulation there is no
noise while in the second one a normally distrib-
uted noise with zero mean and variance 0.2 is
added to the output. In all simulations α = 0.2
for the second technique.

4.1 Example 1

In the first example it is used a FOPDT model

G1(s) =
1

s+ 1
e−0.5s.

4.1.1 No Noise Case

For the no noise case the estimates are

GIV 1(s) =
1.01

s+ 1.01
e−0.5216s

GIV 2(s) =
0.7952

s+ 0.7699
e−0.5078s

GLS3(s) =
1

s+ 1
e−0.517s.

The mean squared errors are

ε1 = 7.2289×10−6, ε2 = 0.0013, ε3 = 6.9703×10−6.

In this case, the FSF constrained technique yields
the best estimate in the mean squares sense.

4.1.2 Noisy Case

For the noisy case the estimates are

GIV 1(s) =
0.7801

s+ 0.7558
e−0.3907s

GIV 2(s) =
0.7610

s+ 0.7254
e−0.4771s

GLS3(s) =
1.117

s+ 1.106
e−0.577s.

The mean squared errors are

ε1 = 9.4139×10−4, ε2 = 0.0022, ε3 = 2.0071×10−4.

Again, the FSF constrained technique yields the
best estimate in the mean squares sense.

The model frequency responses are
G1(jω̂g) = 0.6559]− 1.4308
G1(j2ω̂g) = 0.3985]− 2.3117.

The frequency responses errors are show in
Table 1, so that the FSF constrained technique
yields the best estimate at the frequency points.
Simulation curves and Nyquist plot are shown in
Figure 1 and 2.

Table 1: Frequency Responses Errors
ω̂ E1 E2 E3

ω̂g 8.93× 10−2 9.65× 10−2 4.39× 10−2

2ω̂g 7.65× 10−2 8.32× 10−2 3.89× 10−2

where
E1 = |G1(jω)−GIV 1(jω)|,
E2 = |G1(jω)−GIV 2(jω)|
E3 = |G1(jω)−GLS3(jω)| .

4.2 Example 2

The process is now given by

G2(s) =
4

(s+ 1)(s+ 4)
e−0.5s.
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Figure 1: Step response for process 1.
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Figure 2: Nyquist plot for process 1

4.2.1 No Noise Case

For the no noise case the estimates are

GIV 1(s) =
0.9417

s+ 0.9416
e−0.7025s

GIV 2(s) =
0.7498

s+ 0.7430
e−0.7050s

GLS3(s) =
0.9566

s+ 0.9548
e−0.728s.

The mean squared errors are

ε1 = 2.80×10−5, ε2 = 7.48×10−4, ε3 = 3.63×10−5.

Now, the first technique yields the best estimate
in the mean squares sense.

4.2.2 Noisy Case

For the noisy case the estimates are

GIV 1(s) =
0.7157

s+ 0.7047
e−0.44135s

GIV 2(s) =
0.7682

s+ 0.7503
e−0.7566s

GLS3(s) =
0.9628
s+ 0.975

e−0.746s.

The mean squared errors are

ε1 = 7.4998×10−4, ε2 = 0.0011, ε3 = 1.9345×10−4.

In this case, the FSF constrained technique yields
the best estimate in the mean squares sense.

The model frequency responses are
G2(jω̂g) = 0.7193]− 1.4229
G2(j2ω̂g) = 0.4362]− 2.4140.

The frequency responses errors are show in
Table 2, so that again the FSF constrained tech-
nique yields the best estimate at the frequency
points. Simulation curves and Nyquist plot are
shown in Figure 3 and 4.

Table 2: Frequency Responses Errors
ω̂ E1 E2 E3

ω̂g 9.94× 10−2 6.99× 10−2 9.15× 10−4

2ω̂g 7.12× 10−2 4.96× 10−2 2.83× 10−2
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Figure 3: Step response for process 2.

4.3 Example 3

The process is now given by G3(s) = 1
(s+1)4 .

4.3.1 No Noise Case

For the no noise case the estimates are

GIV 1(s) =
0.3526

s+ 0.3511
e−1.2992s

GIV 2(s) =
0.4033

s+ 0.3994
e−1.8096s

GLS3(s) =
0.3053

s+ 0.2861
e−1.25s.

The mean squared errors are

ε1 = 0.0014, ε2 = 5.7126× 10−4, ε3 = 0.0020.

In this case, the mixed time-frequency technique
yields the best estimate in the mean squares sense.

4.3.2 Noisy Case

For the noisy case the estimates are

GIV 1(s) =
0.3659

s+ 0.3593
e−1.3419s

GIV 2(s) =
0.4105

s+ 0.4008
e−1.8030s

GLS3(s) =
0.2916

s+ 0.2713
e−1.19s.

The mean squared errors are

ε1 = 0.0012, ε2 = 6.0253× 10−4, ε3 = 0.0023.

Again, the mixed time-frequency technique also
yields the best estimate in the mean squares sense.

The model frequency responses are
G3(jω̂g) = 0.7509]− 1.4959
G3(j2ω̂g) = 0.3829]− 2.6619.

The frequency responses errors are show in
Table 3, so that the mixed time-frequency tech-
nique also yields the best estimate at the fre-
quency points. Simulation curves and Nyquist
plot are shown in Figure 5 and 6.
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Figure 4: Nyquist plot for process 2.

Table 3: Frequency Responses Errors
ω̂ E1 E2 E3

ω̂g 6.33× 10−2 1.92× 10−2 0.14
2ω̂g 4.10× 10−2 8.28× 10−2 3.19× 10−2

5 Conclusions

In this paper three techniques for the identifi-
cation of continuous-time FOPDT models from
discrete-time signals. The first technique uses a
step response experiment to estimation. Two of
the techniques use time and frequency domain in-
formation. The second one uses the information
on a mixed time-frequency minimization prob-
lem while the third one uses the time information
in the cost function and the frequency informa-
tion plus an estimate of the time delay as equal-
ity constraints. Simulation results show the use
of frequency data improved the estimation. The
third technique yields better results when good
frequency data is available. The step response
mean square error could be used to choose be-
tween the three techniques.
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